
Implementing Strict Serializability with pg_xact (PGDay Chicago)

v1.0

Implementing
Strict Serializability w/ pg_xact

April 2025 - PGDay Chicago

Jimmy Zelinskie, AuthZed

1

Implementing Strict Serializability with pg_xact (PGDay Chicago)

1
2
3
4

Consistency 101

Agenda & Bio

5 Naive Approach

Strict Serializability

Who needs Strict Serializability?

2

Structure for this
presentation

Agenda

6 pg_xact approach

Implementing Strict Serializability with pg_xact (PGDay Chicago) 3

Who is
Jimmy Zelinskie
Jimmy Zelinskie is a software engineer and
product leader with the goal of empowering
the world through the democratization of
software through open source development.
He's currently the CPO and cofounder of
authzed where he's focused on bringing
hyperscaler best-practices in authorization
software to the industry at large.

At CoreOS, he helped pioneer the
cloud-native ecosystem by starting and
contributing to many of its foundational open
source projects. After being acquired by Red
Hat, his focus shifted to the enablement and
adoption of cloud-native technologies by
mature enterprise stakeholders. To this day,
he still contributes to cloud-native ecosystem
by building the future on top of these
technologies and maintaining standards such
as Open Container Initiative OCI.

Implementing Strict Serializability with pg_xact (PGDay Chicago) 4

What is
consistency
You might be familiar with the acronym ACID.
Consistency is the C in ACID and is one of the
critical properties for correctness in any
system managing state.

While there are formal definitions, I prefer a
colloquial definition of consistency: the
contract for how data can be observed.

Your applications are built with assumptions
about the data it's using and when those
assumptions are incorrect, actions can take
place that shouldn't and critical data can
become corrupt. If your state management
system cannot match your application's
requirements, you will have to re-architect.

Implementing Strict Serializability with pg_xact (PGDay Chicago) 5

Give me an
example
An e-commerce platform is a really intuitive
example for demonstrating consistency
without mentioned software or servers at all.

Consider a parent supervising the online
purchase made by a child; if the child does
not purchase the item, the parent will.

This depiction on the right demonstrates the
ideal scenario: the child checks the orders,
sees the item hasn't yet been purchased,
purchases the item, and the parent checks the
orders to confirm the child made the
purchase.

Read
Orders

Buy
Item #1

Child

Parent Read
Orders

time

Implementing Strict Serializability with pg_xact (PGDay Chicago) 6

Give me an
example
What's actually far more likely than the ideal
case are scenarios where these events are
ordered in surprising ways.

Consider if the parent reads the orders after
the child has read the orders, but before they
have purchased. An unintended
double-purchase takes place.

Read
Orders

Buy
Item #1

Child

Parent

time

Read
Orders

Buy
Item #1

Implementing Strict Serializability with pg_xact (PGDay Chicago) 7

Give me an
example
The previous example is surprising because
the purchase causally depends on the
reading of the orders.

One solution is to simply merge any causal
dependencies into one single, atomic action.
That would focus on atomicity and not
consistency. These terms are distinct, but so
closely related that many scenarios will
discuss both such that it may be pedantic to
focus on the difference.

Read
Orders

Buy
Item #1

Child

Parent

time

Read
Orders

Buy
Item #1

causality

causality

Implementing Strict Serializability with pg_xact (PGDay Chicago)

Read Orders
Buy Item #1

8

Give me an
example
However, not all scenarios can be fixed by
considering atomicity.

Consider the child atomically performed their
read and purchase, but it took an amount of
time before that purchase became visible.

Now, the parent could read in that time before
the purchase is visible and still cause a
double-purchase.

This time until a change becomes visible is the
crux of the difficulty for implementing Strict
Serializability.

Child

Parent

time

Read
Orders

Buy
Item #1

Purchase
becomes

visible

Implementing Strict Serializability with pg_xact (PGDay Chicago) 9

What is
Strict Serializability
Informally, Strict Serializability means that
operations appear to have occurred in some
order, consistent with the real-time ordering of
those operations (e.g. if operation A
completes before operation B begins, then A
should appear to precede B in the serialization
order).

Strict serializability implies serializability and
linearizability. You can think of strict
serializability as serializability total order of
transactional multi-object operations, plus
linearizability's real-time constraints.

Alternatively, you can think of a strict
serializable database as a linearizable object
in which the objectʼs state is the entire
database.

https://jepsen.io/consistency/models
https://jepsen.io/consistency/models/strong-serializable

Red: Usually cannot tolerate network failures
Orange: Tolerates sticking to existing non-faulty nodes
Blue: Tolerates on every non-faulty node

Implementing Strict Serializability with pg_xact (PGDay Chicago)

SpiceDB is a domain-specific database for storing and
querying authorization data. It has a pluggable storage
backend that includes and implementation using Postgres.
This is similar to how relational databases usually sit on top of
a pluggable storage engine often implemented with key-value
store libraries like RocksDB.

SpiceDB's Postgres storage implementation intends to
support all cloud platform's managed Postgres services. This
means no custom plugins -- only extensions that are available
by default everywhere.

Without Strict Serializability, authorization systems suffer
from a vulnerability called the New Enemy Problem. In order
to be secure, SpiceDB must achieve this level of consistency
in the implementation of each storage backend.

Most importantly, SpiceDB offers a Watch API that streams an
totally ordered changefeed of updates to a consumer.

10

Why do we need
Strict Serializability

Implementing Strict Serializability with pg_xact (PGDay Chicago) 11

What's the
naive approach
The highest isolation level configurable in
Postgres is Serializable. Serializability does
not impose any real-time, or even per-process
constraints. If process A completes write w,
then process B begins a read r, r is not
necessarily guaranteed to observe w.

Our first attempt was to build our own MVCC
layer on top of Postgres.

This works, but is SLOW. How can we make
this faster? By reusing the work that the
Postgres MVCC is already doing!

CREATE TABLE relation_tuple_transaction (
 id BIGSERIAL NOT NULL,
 timestamp TIMESTAMP WITHOUT TIME ZONE
 DEFAULT now() NOT NULL,
 CONSTRAINT ...,
);

CREATE TABLE relation_tuple (
 namespace VARCHAR NOT NULL,
 object_id VARCHAR NOT NULL,
 relation VARCHAR NOT NULL,
 userset_namespace VARCHAR NOT NULL,
 userset_object_id VARCHAR NOT NULL,
 userset_relation VARCHAR NOT NULL,
 created_transaction BIGINT NOT NULL,
 deleted_transaction BIGINT NOT NULL DEFAULT
'9223372036854775807',
 CONSTRAINT ...,
);

Implementing Strict Serializability with pg_xact (PGDay Chicago) 12

Introducing
pg_xact
Introduced in Postgres 7 as pg_clog; renamed
to pg_xact in Postgres 10. Available on all
cloud services.

Formally, the name of a transaction metadata
directory on disk; set of functions for access
transaction metadata in queries; most
importantly snapshots and xids (transaction
IDs).

Snapshots encompasse a range of
transactions. A transaction isn't live/ordered
until it is no longer marked as in-progress in a
snapshot.

snapshot == (min, max, [in-progress])

postgres=# select pg_current_snapshot();
 pg_current_snapshot

 172154058:172154058:

postgres=# select pg_snapshot_xmin(pg_current_snapshot());
 pg_snapshot_xmin

 172154058

postgres=# select pg_snapshot_xmax(pg_current_snapshot());
 pg_snapshot_xmax

 172154058

postgres=# select pg_snapshot_xip(pg_current_snapshot());
 pg_snapshot_xip

postgres=# select pg_visible_in_snapshot('172154057'.:xid8,
'172154058:172154058:');
 pg_visible_in_snapshot

 t

Implementing Strict Serializability with pg_xact (PGDay Chicago) 13

An xid-aware
schema
Table "public.relation_tuple_transaction"
 Column | Type | Collation | Nullable | Default |
-----------+-----------------------------+-----------+----------+----------------------------------+
 timestamp | timestamp without time zone | | not null | (now() AT TIME ZONE 'UTC'.:text) |
 xid | xid8 | | not null | pg_current_xact_id() |
 snapshot | pg_snapshot | | not null | pg_current_snapshot() |
 metadata | jsonb | | not null | '{}'.:jsonb |

Table "public.relation_tuple"
 Column | Type | Collation | Nullable | Default
|-----------------+--------------------------+-----------+----------+-----------------------------+
namespace | character varying | | not null | |
object_id | character varying | | not null | |
relation | character varying | | not null | |
userset_namespace | character varying | | not null | |
userset_object_id | character varying | | not null | |
userset_relation | character varying | | not null | |
created_xid | xid8 | | not null | pg_current_xact_id() |
deleted_xid | xid8 | | not null | '9223372036854775807'.:xid8 |

Implementing Strict Serializability with pg_xact (PGDay Chicago)

A SpiceDB revision is a synthetic Postgres
snapshot created by putting a transaction
row's xid into the completed section of the
row's snapshot. For scenarios when we need
the freshest visible data, we can simply use
pg_current_snapshot().

Once we have a snapshot, we can rely on
WHERE pg_is_visible_in_snapshot(...) to do the
heavy lifting when filtering for living tuples.

SpiceDB also has an API for emitting an
ordered changefeed; this is where ordering is
most necessary. pg_xact has one last trick up
it's sleeve, the ability to read the timestamp
metadata from the WAL of when a transaction
was written. This provides us our total
ordering.

14

Querying
alive transactions

./ Psuedocode for marking an xid as completed
if txid < xmin return
if txid > xmax append [xmax, txid) to xip & set xmax to txid
if txid is in xip, delete it
if len(xip) > 0 xmin = xip[0] else xmin=xmax

.- Select all of the revisions AFTER snapshot $1
SELECT xid, snapshot, timestamp
FROM
 relation_tuple_transaction
WHERE
 xid .= pg_snapshot_xmax($1)
 OR (
 xid .= pg_snapshot_xmin($1)
 AND NOT pg_visible_in_snapshot(xid, $1)
)
ORDER BY
 pg_xact_commit_timestamp(xid .: xid),
 xid;

Implementing Strict Serializability with pg_xact (PGDay Chicago) 15

What's the
catch
One of our customers has relied on this code
on a workload running on the largest Postgres
instance on Azure. However, this solution is
not without tradeoffs.

The counter for transaction IDs are
independent per Postgres deployment. While
this works fine for replication, if you want to
copy tables into a new Postgres, you need to
run a script to increment the transaction
counter to the same place as the original
instance.

Xids can overflow, but Postgres has logic to
"freeze" sufficiently old txids so long as
VACUUM runs every 2 billion transactions. We
guarantee that our SpiceDB garbage
collection runs more frequently than that.

.- Incrementing the xid counter
DO $$
BEGIN
 FOR i IN 1..1000000 LOOP
 PERFORM pg_current_xact_id(); ROLLBACK;
 END LOOP;
END $$;

Implementing Strict Serializability with pg_xact (PGDay Chicago) 16

Thanks to
● authzed eng Jake's design)
● postgres documentation & pgpedia
● kyle kingsbury for jepsen's consistency content
● pgday chicago organizers

